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High-pressure Kinetic Analysis of [1,9] Sigmatropy of 2-(Benzyloxy)-

3-bromotropone to 2-(Benzyloxy)-7-bromotroponel)

Shigeru SUGIYAMA,* Akira MORI, and Hitoshi TAKESHITA¥*
Research Institute of Industrial Science, 86, Kyushu University,
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Thermal rearrangement of 2-(benzyloxy)-3-bromotropone to 2-
(benzyloxy)-7-bromotropone, regarded to be the first [1,9] sigma-
tropic rearrangement, was analyzed by high-pressure kinetics. AV#
for the process were shown to be -11.1 and -10.1 cm3 mol-1 in iso-
propylbenzene and l-hexanol, respectively. The figures confirmed
the concerted nature of the rearrangement, and were similar to

various [1,5] sigmatropies of cyclopentadienes.

Recently, we have shown that,z) by the high-pressure kinetic analysis, the
concerted [1,5] sigmatropy of the cycloheptatrienes does involve a loose transition
state; reflecting a long-distance flight of the moving atom, the activation volume
( AV# ) was less negative than the typical [1,5] sigmatropies in cyclopentadienes3)
and N-hydroxy-Z-pyridone.4) In 1976, Harrison et al. discovered a benzyl group
migration of 2-(benzyloxy)-3-bromotropone ( 1 ) to 2-(benzyloxy)-7-bromotropone
(2 ), and proposed the [1,9] sigmatropy mechanism on the basis of activation

5)

energy criteria and no effect with the added radical trapping agent. Meanwhile,

an important role of the [1,9] sigmatropy playing in the outstanding thermal
reactions of troponoids6_10) has been noticed. For example, thermolysis of 4- and
6-isopropyl derivatives of 2-(2-furylmethoxy)tropones revealed the same product
distributions to suggest a precedent [1,9] sigmatropy.g)
In this paper, we will show the high-pressure experimental evidence for the

concerted mechanism of the [1,9] sigmatropy in troponoids; reflecting a short-

distance flight of the moving group, the AV% are in the range of the [1,5]
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sigmatropies of cyclopentadienes, but not to that of cyloheptatrienes.
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To us, 1 seems to be an appropriate substrate for the kinetic analysis.
When isopropylbenzene ( IP, €=2.4 ) and l-hexanol ( HA, €=13.3 ) solutions of 1
were heated at various temperatures ( 110-140 °C ) under various pressures ( 1-1600
bar ), the benzyl migration was taken place to form 2, and the rates were measured

by high-pressure liquid chromatography.
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Fig.l. Pressure Dependence of Ink at 130 °C.

The results ( Tables 1 and 2 ), show the rates in HA were about five times
larger than those in IP. This magnitude of rate enhancement is just similar to
that of the Diels-Alder reaction of isoprene to maleic anhydride, where the rates
were about eight times larger in nitromethane ( €=38.6 ) than those in ethyl
acetate ( €=6.03 ). This correlation shows that the [1,9] sigmatropy is little
dependent on solvents, and can be interpreted as the concerted process. Further-
more, each activation parameter in both solvents shows a similar tendency to the

11)

typical [1,5] sigmatropy operating at the same temperature. The activation

-1 50 IP and HA

entropies ( 887 ) obtained at 130 °C were -47 and -92 J mol™! K
( Table 3 ), respectively; the stronger solvation, the larger negative AS#, being

reasonable for the values expected as the concerted reactions. This indicated a
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weak, but not negligible contribution of polarized structure in the transition

state. Again, the activation free energy ( AG7é ) remained nearly constant in both

solvents as the results of compensation effect between AS% and AH#.lz)

1

Table 1. The Rate Constants ( 107k/s_ ) at Various Pressures at 130 °C

P/bar 1 400 800 1200 1600

Solv IP 4.9140.16 5.48+0.01 6.19+0.18 7.24+0.08 8.28+0.03
HA 26.6+0.4 29.3+0.8 33.842.0 36.2+0.5 40.4%2.2

1

Table 2. The Rate Constants ( 107k/s_ ) at Various Temperatures

Temp/°C 110 120 130 140

Solv IP 1.1740.02 2.94+0.16 4.91+0.16 25.1+0.1
HA 4.2240.07 10.0%0.3 26.6+0.4 49.2+0.3

The rates were accelerated by pressure; in IP, the logarithm of the rates were
linear to the pressure ( r=0.998 ), but in HA, the logarithm of the rates showed a
curvature. One reason of this behavior must be a contribution of a somewhat polar-
ized transition state, as could be seen in AS#, to alter the degree of solvation in

BA under high pressures.

Table 3. Activation Parameters at 130 °C

AT /KT mol™! 88%/7 mo1”! k71 4GT/kJ mo17!
P 12844 —47411 14749
HA 10643 -9247 14345

Thus, AV#=—RT(alnk/aP)T were evaluated by using a linear function in the case
of IP and a quadratic function in the case of HA, respectively, to obtain AV76 being
-11.140.7 in IP and -10.140.5 cm3 mol-1 in HA. The solvent effect on AV# was very
little and the above-mentioned solvation effect to the transition state was very

weak. However, AV% obtained in this reaction were very close to those of [3,3] and
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typical [1,5] sigmatropies other than that of cycloheptatrienes, which should
require a long-distance flight of the moving atom. Consequently, AV* is indicating
the tight-cyclic but not loose biradical-like transition state for this reaction.

Present results of the pressure effect support that the themal rearrangement
of 1 to 2 must proceed via the concerted mechanism, that must be a symmetry-allowed
[1,9] sigmatropy.

In conclusion, from the solvent, temperature, and pressure effects, the rear-
rangement of 1 to 2 is undoubtedly the concerted [1,9] sigmatropy. Moreover, since
the activation volumes of the sigmatropies have shown to be dependent on the flight

2)

distance of the moving groups or atoms, the high-pressure kinetics can provide

good informations to judge the concerted nature of the thermal processes in gener-

a1.13)
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